2x^2+x^2=72

Simple and best practice solution for 2x^2+x^2=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+x^2=72 equation:



2x^2+x^2=72
We move all terms to the left:
2x^2+x^2-(72)=0
We add all the numbers together, and all the variables
3x^2-72=0
a = 3; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·3·(-72)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*3}=\frac{0-12\sqrt{6}}{6} =-\frac{12\sqrt{6}}{6} =-2\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*3}=\frac{0+12\sqrt{6}}{6} =\frac{12\sqrt{6}}{6} =2\sqrt{6} $

See similar equations:

| 3s-5=7 | | 2s+1/2=31/2 | | G(n)=-2n+4 | | 3^x=-3x+9 | | (3x+4)^2=7 | | 1/8-x=72 | | (2x^2-5x+7)-(4x-3x^2+2)=0 | | 9y=28+2y | | x-1/2x+1+2x+1/x-1=17/4 | | (4x-12/3x+24)×(x+8/x-3)=1 | | 4x+T=5.6x | | -2=(5)/(4)-(r)/(2) | | 6y+9y-15=-2 | | 4x+4=2(3x-2) | | 10m-2.5=93/5 | | 150(2x-10)=x | | 4x-70=30-x | | 2(2x+1)-3x=3(3+2x) | | t-16=36 | | 18x=x÷718 | | -1+7z=7z−1 | | 1/3(x-9)=14 | | m/3+4=10 | | 18x=x÷7 | | 3h+10=5+3h | | 8/15=x/19 | | 2/5x-3+3/5x=-8 | | -x+5+2x=-2 | | 72=-8t | | 2/5x-3+3/5=-8 | | (2y-6)=(y+15) | | 8k^2-123k=0 |

Equations solver categories